If the first term of an arithmetic sequence is 5 and the common difference is 3, what is the 4th term?

Prepare for the Mathnasium Job Assessment Exam. Enhance your skills with flashcards and multiple choice questions, each providing detailed hints and explanations. Boost your confidence and get ready to excel!

To find the 4th term of an arithmetic sequence, you can use the formula for the nth term of the sequence, which is given by:

[ a_n = a_1 + (n - 1) \cdot d ]

where:

  • ( a_n ) is the nth term,

  • ( a_1 ) is the first term,

  • ( n ) is the term number, and

  • ( d ) is the common difference.

In this case, the first term ( a_1 ) is 5, the common difference ( d ) is 3, and you are looking for the 4th term (( n = 4 )). Plugging these values into the formula:

[ a_4 = 5 + (4 - 1) \cdot 3 ]

Calculating the expression step-by-step:

  1. Calculate ( 4 - 1 ): This equals 3.

  2. Next, multiply by the common difference: ( 3 \cdot 3 = 9 ).

  3. Finally, add this to the first term: ( 5 + 9 = 14 ).

Therefore, the 4th term of the

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy